

LT GASETECHNIK

weyer gruppe

beyond standards

Industrielle Anlagen mit Wasserstoff-Beimischung

Wasserstoff - Beimischung

Gliederung

- 1. Zur Person
- 2. H2-Versorgung: Von der Quelle zur Anlage
- 3. Beimischung mit eigener Gasmischanlage: Aufbau, Aufgaben und Herausforderungen
- 4. H2 Beimischung: Anwendungsfelder mit Praxisbeispielen
- 5. Hinweise für die Beschaffung

1. Zur Person:

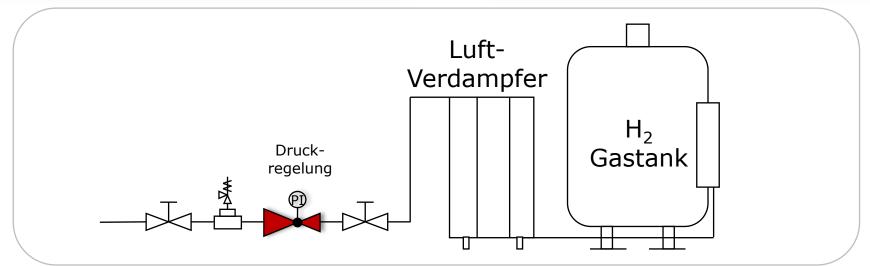
Alexander C. Hanf

- 30+ Jahre internationale Erfahrung mit Thermoprozessanlagen und mit Schutzgas
- Fokus auf Vertrieb, Business Development, IT und Restrukturierung
- Seit 2014 Geschäftsführer bei LT GASETECHNIK, Hersteller komplexer industrieller Gasmischanlagen für die Thermoprozessanlagen-Versorgung
- Verantwortung für ca. 30...40 Mitarbeiter und 2...5 Millionen Euro Gesamtleistung
- Alexander Carl Hanf
- Dipl.-Kfm.
- Geb. 07.11.1967
- Verheiratet, gem. Sohn

2. H2 Versorgung: Von der Quelle zur Anlage

Wasserstoff

GASVERSORGUNG



1. H₂-Quellen

- > Flasche
- > Flaschenbündel
- > Pufferspeicher (z. B. Quelle Elektrolyse)
- > Flüssiggas-Tank mit -Versorgung
- > H2 Kernnetz

2. H₂-Bereitstellung

- Verdampfung
- > Tieftemperaturschutz
- > Druckregelung mit Sicherheitsventil
- Leitung

Wasserstoff - Bereitstellung

Verdampfer-Umschaltung

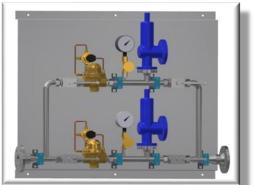
Umschaltventile

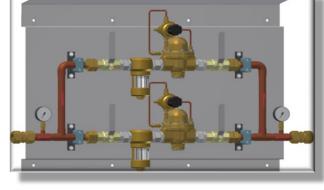
Tieftemperatur-**Schutz**

Wasserstoff

DRUCKREGELUNG

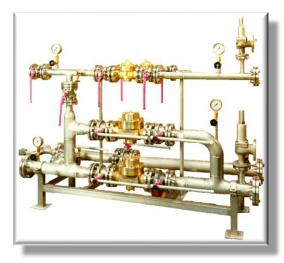
Druckregeleinheit




Tafel mit Bypass oder redundanter Druckregelung



Druckstufenänderung = Sicherheitsventil



3. Beimischung mit eigener Gasmischanlage Aufbau, Aufgaben und Herausforderungen

Wasserstoff - Beimischung

mit eigener GASMISCHANLAGE

Typen von Gasmischanlagen

Manuell:

Statisch mit manuellem Regeleingriff (keine Automatik, H₂ oder Wobbe-Regelung)

Proportionalventil:

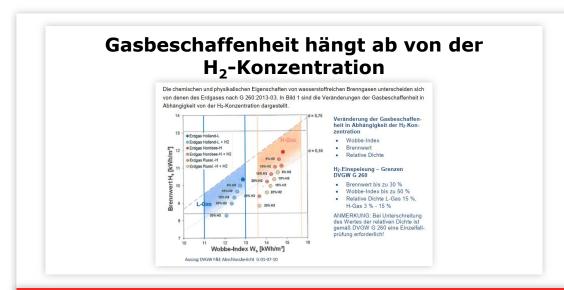
Manuelles oder Stellmotor-angetriebenes Proportionalventil (veraltet, ungenau, langsam)

Automatisch:

Dynamisch mit <u>automatischem</u> Regeleingriff auf H₂-Anteil und/oder Wobbe-Index

Bestandteile einer modernen und sicheren Gasmischanlage

- > Absperrung (Eingang und Ausgang)
- Gasfilter
- > Eingangsdruck-Messung mit Differenzdrucküberwachung
- > Gasrücktrittsicherungen in jeder Gasstrecke
- Druckregler, ggfs. mit SAV
- > Automatisierte Armaturen zur Messung und Regelung Gasfluss
- > Ausgangsdruck-Überwachung und -Regelung
- > Automatisiertes Absperrventil
- > Gasanalyse für H2, Wobbe-Index, Brennwert
- > Automatisierte Anlage mit Industrie-Steuerung
 - Regelung Ventile im geschlossenen Regelkreis auf Analysenwert
 - Lokale Anzeige Messwerte, Alarme, Statusmeldungen
 - Datenspeicherung mit Dokumentation
 - Kopplung an übergeordnete Systeme



Hintergrund für Tests von H₂ Beimischung

Umstellung auf H₂-Readiness (gem. DVGW G 655 Merkblatt)

Nach dem DVGW-Arbeitsblatt G 262:2011-09 "Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung" war bisher die Einspeisung von < 10 Vol.-% Wasserstoff zulässig. Mit der Fortschreibung der DVGW G 260:2020-09 und Zusammenführung mit DVGW G 262 (A) wurden die Grundlagen für die Einspeisung von Wasserstoff bis **20 Vol.-%** fortgeschrieben.

Daher

- > H₂-Beimischung
- Messung
 - Wobbe-Index
 - Brennwert
 - H₂-Anteil
- > **Test der Auswirkungen** auf Brenner, Gut & Abgas
- > Schrittweise Umstellung anstatt von 0% auf 100%

Herausforderungen

bei der H₂ Beimischung

1. Integration

- Sicherheit
- Ex-Schutz
- Arbeitsschutz
- Genehmigungsverfahren, Einordnung als Störfallbetrieb?

2. Quelle

- Eigene Elektrolyse
- Beschaffung Flüssig-H₂
- Anschluss an H₂-Kernnetz

Flammengeschwindigkeit

5. Prozess

Flammenerkennung

Flammenform

Wärmeeintrag

6. Energiedichte

- Gasbeschaffenheit ändert sich je nach H2 Anteil
- Wobbe 50%
- Brennwert 30%
- Rel. Dichte 15%
- > 40% NG-Ersatz = ca.(!) doppelter Volumenstrom

3. Anlagen-Eignung

- Rohrleitungen + Armaturen
- Einbindung in das Erdgas-Werksnetz
- Umschaltung zwischen NG und H₂/NG Gemischen
- Brennereignung (max. Prozentanteil H₂)

7. Abgas

- Abgaszusammensetzung
- NOx Konzentration -> Anpassung SCR/SNCR?

4. Umfang

- Beimischung oder 100% H₂
- Welche H₂ Mengen für aktuelle & künftige Lastgänge

8. Anlagentechnik

- › Aufbau der Gasmischanlage mit sicherem Aufbau
- Regelungsgeschwindigkeit
- Verhinderung Rückmischung
- Umfang Gasanalyse

Unterstützung bei Ihren Herausforderungen

https://www.klimaschutz-industrie.de/foerderung/bundesfoerderung-industrie-und-klimaschutz-modul-1/

1. Bundesförderung:

- Förderung bis zu 40% der Investitionskosten bei min 40% Erdgaseinsparung durch H2-Beimischung
- > Kleine Unternehmen ab 500 T€ Gesamtinvestitionskosten. Andere Unternehmen ab 1 Million €. Förderhöhe bis zu 200 Millionen €
- Förderfähige Kosten: Investitionskosten, "Ausrüstungen, Maschinen oder Anlagen, die für die Umstellung auf erneuerbaren Wasserstoff oder aus erneuerbaren Wasserstoff gewonnene Brennstoffe als Ersatz für fossile Brennstoffe erforderlich sind."
- > Vorabauskunft des KEI: Förderung der Gasmischanlage ist möglich

2. weyer gruppe:

- Beratung zu
 - 1. Integration
 - 2. Anlageneignung und -technik
 - 3. Prozess, Abgas
- > Genehmigung
- Gasmischtechnik
- Sicherheitstechnik
- > Explosionsschutz

Schrittweiser Übergang durch H₂ Beimischung

4. H₂ BEIMISCHUNG nach Anwendungsfeldern mit Praxisbeispielen

Typische Anwendungsfelder

Industrielle H₂ Verwendung

Stahl / Glas / Keramik

5. Brennstoffzelle

- Test und Prüfung Brennstoffzellen mit unterschiedlichen Gasgemischen
- Tests mit erschöpfenden Gasgemischen

2. Institute/Hersteller Gasgeräte

Weltmarkt-Erdgas-Qualitäten mit var. H₂-Anteil für Entwicklung, Baumuster-Prüfung, Zertifizierung nach VO (EU) 2016/426 (EU-Gasgeräteverordnung) u. Konformitätserklärung

Abnahmekriterium meist: Gasgemisch-Präzision

6. Exoten

- Beratung und Planung der <u>H₂ Verwendung</u> als Beimischung
- Z. B. H₂ Mischung mit Bohrlochgas Ammoniak/Methanol

3. Industrieofen

 $\frac{Brenner}{mit \ variablem/steigendem}$ $\frac{H_2 -Anteil \ in \ H_2 /Erdgas}$

Konformitätsbewertung nach Maschinenrichtlinie auf Basis der DIN EN 746-2

7. Backup

Erdgasmangellage:

- Backup/Redundanz
- (Einsparung)
- Gasmischanlagen für H2/Propan/Luft NG/H2

4. Motoren/Turbinen

Erdgas/H₂/CO₂ Gasmischungen für Entwicklung und Test

- Turbinen: Aktuell 1% -> Neue Bauarten 15%-100% H₂ Anteil
- > Stat. Gasmotoren: Aktuell 2% -> Neue 10% H₂

8. Start-Up

Verschieden <u>Innovationen</u>, dafür:

- Unterstützung Engineering
- Fertigung
- CE, Risikoanalyse/HAZOP

1. Großverbraucher 130 und 400 Nm³/h

1: Konti-Glühe

> H₂: 100 Nm³/h (8 barg)

> Erdgas: 30 Nm³/h (3,5 barg)

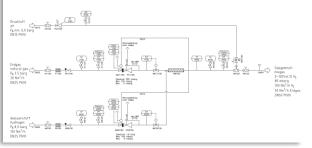
> 0...100 Vol.% Erdgas in H₂

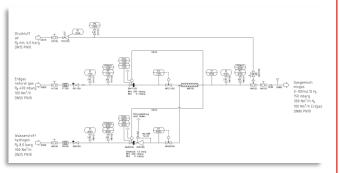
> 130 Nm³/h, 80 mbarg

#2: Batch-Glühe:

 \rightarrow H₂: 300 Nm³/h (8 barg)

> Erdgas: 100 Nm³/h (3,5 barg)


> 0...100 Vol.% Erdgas in H₂


> 400 Nm³/h, 150 mbarg

Besonderheiten:

- Automatischer MFC-Gasmischer mit unabhängiger Industriesteuerung
- > Genauigkeit +/- 0,2% vom Endwert
- > Auch hohe Durchflüsse werden bei niedrigem Druck geregelt

Projekt: LT23/0/5/0510

Industrie: Stahl

Kunde: tkSE, Rasselstein

Jahr FAT: 2024

Beschreibung:

Zwei dynamische Gasmischer H_2 /Erdgas für die Energiewende in der Schwerindustrie

2. Institute H₂ in Erdgas bis zu 500 Nm³/h

Mischung von:

- > Erdgas: 4...107 Nm³/h (10 barg)
- > H₂: 0,2...368 Nm³/h (10 barg)
- > N₂, CO₂, CO: 0.4...20 Nm³/h (10 barg)
- > C₄H₁₀, C₃H₈, C₂H₆: 0,4...20 Nm³/h (10 barg)
- Ausgangsdruck 50 mbarg

Besonderheiten:

- > Pufferbehälter
- > Genauigkeit +/- 0,2% vom Endwert
- Rezeptverwaltung

Projekt: LT22/0/5/0328

Industrie: Prüfinstitut

BBI Gastechnologisches

Institut gGmbH Freiberg

Jahr FAT: 2023

Beschreibung:

Dynamische Gasmischanlage zur rezeptgesteuerten Herstellung von Erdgas-Substituten mit Pufferbehälter.

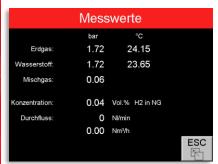
Gasgemisch-Überprüfung mit GC

3. Industrieofen 26 Nm³/h mit Wobbe-Index

Mischung von:

> Wasserstoff: 0..20 Nm³/h, 2 barg

> Erdgas: 0...6 Nm³/h, 0,5...0,7 barg


Gasgemisch:

- \rightarrow 0...100 Vol.% H₂ in Erdgas
- > 0....20 Nm³/h, 60 mbarg
- > Einspeisung von zwei 10...30 kW Brennern

Besonderheiten:

- > Massendurchflussregler-gesteuertes System
- Garantierte Genauigkeit +/- 0,2 Vol.%
- Gaswarnsystem integriert
- H₂ in Erdgas Gas-Analysator integriert, mit Möglichkeit zur Erweiterung der Messwerte, z.B. Heizwert oder Wobbe

Projekt: LT23/0/5/0258

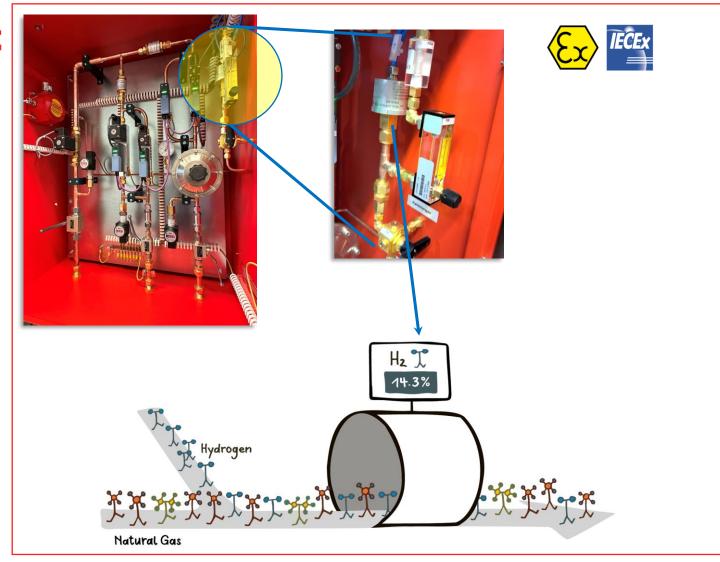
Industrie: Thermoprozessanlagen

Kunde: Industrieofenbau

Bader & Scheffer GmbH

Jahr FAT: 2023

Beschreibung:


Vollautomatischer Gasmischer mit Massendurchflussregler, SPS, mit Ausgangsdruck 60 mbarg für zwei 30 kW Brenner für Testversuche zum Scale-up

Exkurs: Messung

H₂ / Wobbe / Brennwert mit Gasanalysator

- Gas-Analysator misst Wärmeleitfähigkeit des Methan-Wasserstoff-Gasgemischs; Kalibrierung Erdgas-spezifisch
- Präzise Anteile von 0 bis 100 Mol-%. Ideal für genaue Messung von H₂
- Falls die Basiszusammensetzung des Erdgases erheblich variiert, können auch zwei Gas-Analysatoren eingesetzt werden, um zusätzlich die Basis zu messen
- > Typische LT-Installation
 - Überwachung Durchfluss zum Gasanalysator
 - Manuelle Umschaltung auf definiertes Messgas
 - Gasmischer-Steuerung <u>regelt</u> primär auf die Volumenstrom-Anteile und <u>überwacht</u> und dokumentiert die Gasgemischzusammensetzung über den Gasanalysator-Wert (Kaskadenverhältnisregelung)

4. Motoren/Turbinen 315 Nm³/h aus CO₂/H₂ mit Erdgas

Mischung von:

- > CO₂ 0...119 Nm³/h mit 5 barg
- > H₂ 3...424 Nm³/h mit 5 barg
- > Natural Gas 14...197 Nm³/h mit 5 barg

Gasgemisch:

- > Erdgas mit H₂ max. 528 Nm³/h
- Erdgas mit CO₂ max. 315 Nm³/h
- > Einspeisung für Gasturbinen

Besonderheiten:

- > Massendurchflussregler gesteuertes System
- > Garantierte Genauigkeit +/- 0,2 Vol.%
- Bei der Gasanalyse für CO₂ (NDIR) und H₂ (WLD) wird der tatsächliche Erdgasstrom durch Messung der spezifischen Wärmekapazitäten und der Dichte bestimmt

Projekt: LT23/0/5/0165

Industrie: Motoren

Kunde: MAN Bus & Truck SE

Jahr FAT: 2024

Beschreibung:

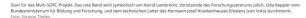
Nutzung der zukünftigen grünen Energie aus H_2 und CO_2 in Kombination mit Erdgas. Optimiert durch Steuerung und zwei LT-Gasanalysatoren.

Aus einer Hand: Auslegung, Detail-Engineering, Automatisierung und Gasanalyse, Fertigung, IBN

5. Brennstoffzellentest 50 Nm³/h CH₄/H₂

Mischung von:

- > H₂: 2...50 Nm³/h (6-10 barg)
- > CH₄: 1...11 Nm³/h (5-6 barg)
- CO₂ 0...60 NI/Min; C₃H₈ 0...20 NI/Min; N₂ 0...180 NI/Min (5-6 barg)
- > Ausgangsdruck 50 mbarg


Besonderheiten:

- > Pufferbehälter
- > MFC mit CMOS-Sensoren
- > Genauigkeit +/- 0,3 % vom Endwert
- > Reproduzierbarkeit von 0,1 % des Endwerts
- > Spülung von Mischkammer und Puffer
- > Weiterer GM für erschöpfende Gasgemische

Wasserstoff zur Energieversorgung des Krankenhauses

Modell-Projekt in Erkelenz: Am Hermann-Josef-Krankenhaus ist ein neues Brennstoffzellen-System in Betrieb gegangen, durch das Strom und Wärme durch den Einsatz von Wasserstoff gewonnen werden können.

Projekt: LT22/0/5/0859

Industrie: Brennstoffzellen

Kunde: Robert Bosch, Germany

Jahr FAT: 2023

Beschreibung:

Dynamische Gasmischanlage zur Herstellung von Erdgas-Ersatzstoffen mit Pufferbehälter für die Energiewende mit Brennstoffzellen

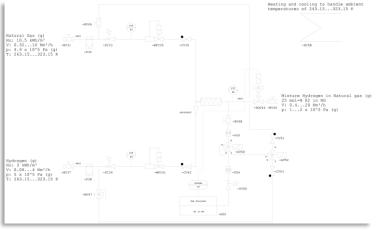
Gasgemisch-Überprüfung mit GC

6 a. Exoten H₂ / Bohrloch-Gas

Mischung von:

- Wasserstoff: 0.08...4 Nm³/h; 5 barg 3 kWh/m³
- Erdgas: 0,3...16 Nm³/h; 4,9 barg; 10,5 kWh/m³

Gasgemisch:


- > 0,4...20 Nm³/h; 1...2 barg
- > 25 Vol.% H₂ in Erdgas

Besonderheiten:

- > Massendurchflussregler gesteuertes System
- > Garantierte Genauigkeit +/- 0,2 Vol.%
- > Gaswarnsystem integriert
- > H₂ in Erdgas Gas-Analysator integriert, mit Möglichkeit zur Erweiterung der Messwerte, z.B. Heizwert oder Wobbe

Projekt: LT24/0/5/0010

Industrie: Energie

Kunde: Torpol Oil & Gas,

Poland

Jahr FAT: 2024

Beschreibung:

Vollautomatischer Gasmischer mit Massendurchflussregler, SPS, Wobbe-Analyse

6 b. (noch) Exot Ammoniak/Methanol

Aufgaben:

- Mobile Versorgungscontainer für Fässer, Bündel und Einzelflaschen
- Gasmischanlagen und Gasdosieranlagen für korrosive und toxische Gase incl. Regelstrecken für Druck und Volumenstrom
- Ausstattung nach Bedarf mit Verdampfer, Pumpen, Heizung, Umschalt-Tafel, Entnahmeschläuche, WHG Wanne
- Einschl. Steuerung, Schaltschrank,
 Überwachungseinrichtungen, Sicherheitseinrichtungen
- > Fertigung gem. PED97/23/EG, AD 2000, TRBF, WHG
- > Inertisierungs-Einrichtungen

Sicherheit:

- Sicherheitsbetrachtungen (PAAG/HAZOP)
- > Explosionsschutzdokumente
- Sicherheitstechnische Konzepte zur Handhabung brennbarerer, brandfördernder oder toxischer Gase

7a. Back-Up 64 MW Propan/Luft H₂ READY

Mischung von:

> Propan 2490 Nm³/h \approx 5000 kg/h mit 5...8 barg

> Luft: 2300 Nm³/h ≈ 2970 kg/h mit 5,5 barg

SNG - Synthetisches Gas:

Max. Leistung: 64 MWh/h 4790 Nm³/h SNG

> Gasmischung

Wobbe: 11.8 ... 14.3 kWh/Nm³

> 3 barg

Besonderheiten:

Korrosive Atmosphäre

> Industrielles Steuerungssystem, O₂-Analysator

 Umfassendes Sicherheitskonzept mit SIL Gas Analysator und SIL-Abschaltung

Projekt: LT22/0/5/0713

Industrie: Chemie

Kunde: Kali & Salz AG, Zielitz

Jahr FAT: 2023

Beschreibung:

Gasmischanlage als Back-Up für eventuelle Erdgasmangellage

H₂ Ready

7b. Back-Up 11 MW Propan/Luft H₂ READY

Aktuell:

> Propan 425 Nm³/h mit Luft: 310 Nm³/h

> SNG: 11 MWh/h aus 735 Nm³/h SNG bei 3 barg

H2-Ready:

> 100% H2: 3.700 Nm³/h bei 3 barg

> 40% NG-Ersatz (Bundesförderung) bedeuten bei Vorgabe 11 MW 30% SNG / 70 % H2; denn volumetrischer Energieinhalt nur ca. 1/3 von NG 1.500 Nm³/h (4,4 MW) H2

> Vorhanden:

Platz

Eingänge Steuerung und GWA

Gasanalyse

> Neu:

H2-Regelstrecke

HAZOP, CE

Projekt: LT23/0/5/0009

Industrie: Keramik

Kunde: PA Salzgitter for

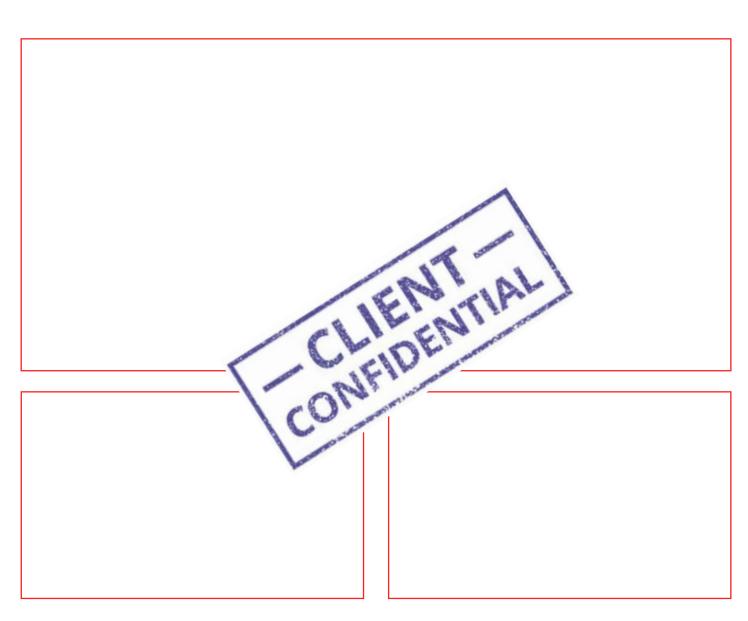
Geberit, Haldensleben

Year FAT: 2023

Beschreibung:

Gasmischanlage als Back-Up für eventuelle Erdgasmangellage

H₂ Ready


8. Start-Up Aufgaben

Schnelle Skalierung:

- > Verlängerte Werkbank
- Fertigung mit gasetechnischer Kompetenz seit über 50 Jahren
- > Mechanische-, EMSR- und Gasanalyse-Fertigung

Kompetenz:

- > Engineering bis zur Fertigungszeichnung
- > Elektrisches Engineering einschl. Programmierung
- > CE-Kennzeichnung
- HAZOP
- > Gasetechnische Erfahrung

5. Hinweise für die Beschaffung

Ihre Stichworte

für die evtl. Beschaffung

Anlagensicherheit

- Elektrische Betriebsmittel in Ex-Ausführung
- Verriegelungskonzept
- Gaswarnsystem
- Lokale Anzeige und Datentransfer

Datenaustausch

- Sollwerte, Messwerte, Alarmmeldungen, Statusmeldungen
- Unidirektional oder bidirektional mit einem übergeordneten Leitsystem

Regelungsverhalten

- Manuelle oder automatische (dynamische) Regelung des H₂/NG-Verhältnisses
- Regelung Volumenstrom und/oder Ausgangsdruck

Mediensicherheit

- Rohrleitungen in Kupfer oder geeignetem Edelstahl
- H₂-geeignete Armaturen und Elastomere

Mischpräzision

- Abnahmekriterium: Gasgemisch-Präzision
- Einbeziehung aktueller Erdgas-Qualität (H₂-Anteil)
- Ggfs. Kaskadenaufschaltung Analysenmesswert auf Regelventile, SPS-gesteuert

Aufbau

- Tafel, Gestell, Raum, Container
- Keine / Ex-Zone: Eine / getrennte Anlage
 - Anlagenteil
 - MSR-Teil
 - Gasanalyse

Gasanalyse

- > H₂-Anteil
- Brennwert
- > Wobbe-Index
- Dichteberechnung
- Gas-Chromatograph

Verfügbarkeit

- Anforderungen Verfügbarkeit: Anlagenredundanz
 - Gasmischstrang
 - Gasanalyse
 - Steuerung
- Vollautomatische und druckstoßfreie Umschaltung

Zusammenfassung: H₂ Beimischung

zur schrittweisen Integration

Angepasste Anlagentechnik

- > Sicherer Aufbau
- > Regelung auf Analysewert
- > Angepasste Leistung und Ausstattung

Vorzugsweise aus einer Hand

- Konzept- und Detailengineering für Mechanik, Automatisierung und Gasanalysetechnik
- Herstellung, Inbetriebnahme, Wartung
- Dokumentation, CE, Risikoanalyse, SIL

LT GASETECHNIK

weyer gruppe

beyond standards

